Gulzhan**
21.05.2018, 23:09
источник: Коммерсантъ-Огонек (http://www.kommersant.ru/ogoniok) ,21,05,2018
С чего начинается молния
За красными гоблинами, эльфами и голубыми струями теперь будут наблюдать с МКС. Но даже с земли ученым многое видно: от встречных лидеров до сталкеров. В науке о молниях — сезон открытий.
https://retina.news.mail.ru/pic/d5/57/image33525999_6a89c4ac4e35e56abe0d8f832710dcdf.jpg
На МКС доставлен комплекс приборов ASIM, задача которого приоткрыть тайны переходных световых явлений, сообщили информагентства. За скучной формулировкой — научный детектив: в конце 1980-х ученые обнаружили в верхних слоях атмосферы во время гроз нечто странное. Как оказалось, там имеют место особые световые явления, или TLE (от англ. Transient Luminous Events). Говорят, их наблюдали и раньше, в частности пилоты самолетов, но фундаментальная наука занимается этой загадкой лишь пару десятилетий. Эти феномены даже окрестили необычно — спрайтами (они же красные призраки или гоблины — короткие вспышки, которые наблюдают в основном в ночное время), эльфами (самые высотные и кольцеобразные) и голубыми струями. С чем столкнулась наука, «Огонек» выяснил в Лаборатории физики молний Института прикладной физики РАН.
Все грозовые разряды делятся на три типа: облако — земля (это те самые молнии, которые мы видим), внутриоблачные разряды и разряды облако — ионосфера. Так вот TLE — это и есть разряды над грозовыми облаками. Для того чтобы образовался такой разряд, должна быть мощная облачность, что в наших широтах редкость, поэтому их чаще наблюдают в Европе и Америке. Однако у нас в Лаборатории недавно запустили экспериментальную установку, с помощью которой мы моделируем такие разряды.
Мария Шаталина
сотрудник лаборатории физики молний Института прикладной физики РАН
В чем научная значимость проекта по изучению TLE из космоса? Специалисты, опрошенные «Огоньком», единодушны: с ними, как и с молниями в целом, остается много загадок. А в Лаборатории физики молний поясняют: известно, что TLE возникают, когда при мощных грозовых событиях создается разница потенциалов между грозовым облаком и ионосферой и разряд может пойти вверх. Но есть ли еще какие-то условия для их возникновения? Вопрос открыт. Как открыт и другой: как влияют эти световые явления на состав верхних слоев атмосферы? Известно, что во время грозы внизу, под облаками, выделяется озон. Но что происходит наверху, ведь в электрическом поле химические реакции протекают по-другому?Тут и пригодится комплекс ASIM.
— Можно сказать, что новый феномен, который ASIM будет изучать, — это окно во внутренние процессы, происходящие в молнии, — подчеркивает в одном из интервью ведущий исследователь проекта, физик из Дании Торстен Нейберт.
Проект только начался, но перспективы у него самые радужные, ведь в последние годы наука семимильными шагами продвигается в изучении молний. Судите сами. Как отмечает Мария Шаталина из Лаборатории физики молний, только недавно были открыты так называемые компактные внутриоблачные разряды — очень мощные и редкие, их приходится изучать со спутников. А вот другое открытие: благодаря высокочувствительным скоростным инфракрасным камерам российскими учеными из Высоковольтного научно-исследовательского центра ВЭИ обнаружен новый тип зарядов — так называемые сталкеры.
— Они идут перед лидерным разрядом и показывают, как он будет развиваться, — уточняет Шаталина.— Одно из важных направлений в науке о молниях — это попытка их предсказать, выяснить условия возникновения, вероятность, мощность и направление разряда… Так вот, изучение сталкеров помогает прояснить эти вопросы.
Впрочем, человек давно мечтает не просто предсказывать молнии, но и «управлять» ими.
Американские ученые из Флориды экспериментируют с так называемыми триггерными молниями (запускают в грозовое облако ракеты с заземленной проволокой, пытаясь спровоцировать появление разряда).
Это не просто научное любопытство: возможно, когда-нибудь с помощью подобных технологий мы научимся «разряжать» надвигающиеся грозы… А, к примеру, подмосковные специалисты исследуют, при каких условиях заряд может попасть в самолет, пролетающий через грозовое облако: эксперименты проводятся на моделях, причем моделируют и облако, и самолет.
Наука о молниях не только открывает новые горизонты, но и пересматривает имеющиеся взгляды. Еще одно открытие, буквально переворачивающее наши представления о молниях, связано с явлением, которое названо «встречный лидер». Речь вот о чем: ранее считалось, что молния бьет сверху вниз, из облака в землю. Однако благодаря современным высокоскоростным съемкам выяснилось: когда сверху, из облака, стартует лидер (так называют первую стадию образования грозового разряда), ему навстречу, с земли, идет встречный разряд, а соединяются они на высоте в несколько десятков метров над поверхностью земли. То есть, когда молния бьет в дерево (или, не дай бог, в человека), она бьет не сверху, а снизу! Это очень быстрый процесс, незаметный глазу, — несколько сотен миллисекунд, но его открытие, по сути, — маленькая революция.
Впрочем, загадок, связанных с молниями и грозами, на наш век хватит: до сих пор не очень понятно, как устроена шаровая молния и почему возникает. Как нет эффективных инструментов, скажем, по прогнозированию гроз.
— Грозы происходят в атмосфере, а это многофазная, сильно дисперсная система: там есть лед, вода, газы, ионы, все это взаимодействует, и просчитать все факторы пока не представляется возможным, — объясняет Мария Шаталина.— Вероятность возникновения грозы, конечно, частично коррелирует с многолетним опытом наблюдений, но мы хотим точно знать, будет ли гроза, как долго она продлится и почему возникает именно в этом регионе. Или еще вопрос: при каких условиях бывают положительные, а при каких отрицательные вспышки? Известно, допустим, что положительно заряженные, очень мощные вспышки возникают там, где в атмосферу попадают продукты вулканической деятельности и природных пожаров. Но как именно это происходит? Все это до сих пор требует исследований.
Ученые, подчеркивает Шаталина, прежде всего хотят понять, как вся эта глобальная атмосферная электрическая цепь влияет на климат и жизнь на Земле, на человека. Хотя вопрос легко можно и переформулировать: а как человек может повлиять на нее?
https://retina.news.mail.ru/prev780x440/pic/89/2c/g33525999_57fd085df6b834bcf87c46d44cf9835e.jpg
Источник: Фотоархив ИД «Коммерсантъ»
Атмосфера загадок
Дмитрий Зыков, директор фонда «Наука, культура и жизнь», доцент МГИМО
Когда я учился в школе, казалось, что про молнию уже все известно. Нам уверенно рассказывали, что у земли и облака есть разноименные заряды: когда они сближаются на критическое расстояние, происходит разряд — его-то и видно, и слышно с земли. Однако с развитием измерительных приборов и накоплением научных данных оказалось, что это лишь часть правды. Ну, например, выяснилось, что молнии могут быть не только между землей и облаком, но и между разноименно заряженными облаками. Или что бывает молния, сопровождающаяся дождем, и та, что дождем не сопровождается. Или что молнии часто сопровождают торнадо, только их природа совершенно иная (так называемые наведенные заряды образуются из-за того, как именно работает торнадо, — это чистая электростатика). В результате сегодня мы многое знаем о молниях, но чем больше наука узнает, тем больше возникает вопросов, открываются все новые детали, которые надо уточнять. Вот, скажем, у теоретического отдела Физического института Академии наук есть площадка на Алтае: там наблюдают за молниями. Еще лет 10 назад на этой площадке в день фиксировалось по 15−20 разрядов, а сейчас это месячный показатель. Почему он упал? Вопрос. Возможно, что-то случилось с электрическим полем атмосферы (в атмосфере электрически заряжено все, от осадков до пыли.— «О»). Но с чем это связано? С климатом? Тогда как именно действует эта связь?
В климатологии сегодня вообще больше вопросов, чем ответов. Откуда берутся землетрясения, провоцирующие цунами? От чего зависит вулканическая активность?
Да что там, мы даже не знаем, почему, к примеру, из части вулканов идет жидкая магма, а другие вулканы выбрасывают только камни и дым. Или вернемся к молниям: известно, что электромагнитное поле Земли и грозовая активность тесно связаны.
Так вот сегодня нас пугают сменой магнитных полюсов Земли. Может ли это произойти? И если да, то в какую сторону будут изменения? Как это скажется на той же самой грозовой активности? Наблюдения за свечением в верхних слоях атмосферы могут дать ответ хотя бы на часть этих вопросов. К тому же такие исследования в некоторой степени экономически оправдывают существование дорогой игрушки вроде МКС: позволяют набрать статистику, опробовать новейшие приборные комплексы и, вполне возможно, использовать полученные данные для более точного предсказания погоды. А это уже совершенно конкретные деньги, причем немалые…
Как часто бывает с фундаментальной наукой, мы не способны предсказать практическую пользу, которую в итоге получим от нынешних исследований. Но можно не сомневаться, она будет. Напомню: исследование квантовых переходов вылилось в появление светодиодов, а лазеры, начинавшиеся как чистая наука, сегодня используются на производстве. Схожие перспективы может открыть и изучение TLE. К примеру, если это подскажет нам, как убрать помехи при передачи данных со спутников во время грозы, уже неплохо.
Александр Раевский, Московский физико-технический институт
Многие секреты молнии до сих пор не разгаданы. Облако не может так наэлектризовать себя, чтобы между ним и землей возник разряд. Напряженность электрического поля в грозовом облаке не превышает 400 киловольт на метр (кВ/м), а электрический пробой в воздухе происходит при напряженности свыше 2500 кВ/м. Значит, для возникновения молнии необходимо что-то еще. По мнению ученых из группы Александра Гуревича, процесс «запускают» космические лучи — частицы высоких энергий, обрушивающиеся на Землю из космоса.
Николай Калинин, завкафедрой метеорологии и охраны атмосферы географического факультета ПГНИУ
Существует несколько видов молний. Наиболее распространенная — линейная. Еще есть четочная молния — обычно появляется между двумя тучами, образуя прерывистую линию светящихся пятен. Еще один вид — плоская — электрический разряд на поверхности облаков, не имеющий линейного характера и состоящий, по-видимому, из светящихся разрядов. И шаровая — выглядит как светящееся и плавающее в воздухе образование. Ученый-физик Капица считал, что шаровая молния имеет радиоволновую природу, поэтому она проходит по проводам через стены и дымоходы.
Александр Костинский, участник международной коллаборации «Молния и ее проявления»
— Откуда взялись такие сказочные названия, как эльфы, духи, спрайты?
— Эльфы — это сокращение от английского Emissions of Lightand Very Low Frequency Perturbations from Electromagnetic Pulse Sources (Elves), по звучанию оно напоминает название мифических эльфов. Спрайты — это танцующие воздушные сказочные создания. Когда открывали все новые по формам классы разрядов, то там были и carrots, морковки, и гномы, и медузы и т. д. Эти названия не просто шутки геофизиков, но и способ привлечь к изучению новых явлений внимание, а с ним и финансирование.
Кирилл Журенков
С чего начинается молния
За красными гоблинами, эльфами и голубыми струями теперь будут наблюдать с МКС. Но даже с земли ученым многое видно: от встречных лидеров до сталкеров. В науке о молниях — сезон открытий.
https://retina.news.mail.ru/pic/d5/57/image33525999_6a89c4ac4e35e56abe0d8f832710dcdf.jpg
На МКС доставлен комплекс приборов ASIM, задача которого приоткрыть тайны переходных световых явлений, сообщили информагентства. За скучной формулировкой — научный детектив: в конце 1980-х ученые обнаружили в верхних слоях атмосферы во время гроз нечто странное. Как оказалось, там имеют место особые световые явления, или TLE (от англ. Transient Luminous Events). Говорят, их наблюдали и раньше, в частности пилоты самолетов, но фундаментальная наука занимается этой загадкой лишь пару десятилетий. Эти феномены даже окрестили необычно — спрайтами (они же красные призраки или гоблины — короткие вспышки, которые наблюдают в основном в ночное время), эльфами (самые высотные и кольцеобразные) и голубыми струями. С чем столкнулась наука, «Огонек» выяснил в Лаборатории физики молний Института прикладной физики РАН.
Все грозовые разряды делятся на три типа: облако — земля (это те самые молнии, которые мы видим), внутриоблачные разряды и разряды облако — ионосфера. Так вот TLE — это и есть разряды над грозовыми облаками. Для того чтобы образовался такой разряд, должна быть мощная облачность, что в наших широтах редкость, поэтому их чаще наблюдают в Европе и Америке. Однако у нас в Лаборатории недавно запустили экспериментальную установку, с помощью которой мы моделируем такие разряды.
Мария Шаталина
сотрудник лаборатории физики молний Института прикладной физики РАН
В чем научная значимость проекта по изучению TLE из космоса? Специалисты, опрошенные «Огоньком», единодушны: с ними, как и с молниями в целом, остается много загадок. А в Лаборатории физики молний поясняют: известно, что TLE возникают, когда при мощных грозовых событиях создается разница потенциалов между грозовым облаком и ионосферой и разряд может пойти вверх. Но есть ли еще какие-то условия для их возникновения? Вопрос открыт. Как открыт и другой: как влияют эти световые явления на состав верхних слоев атмосферы? Известно, что во время грозы внизу, под облаками, выделяется озон. Но что происходит наверху, ведь в электрическом поле химические реакции протекают по-другому?Тут и пригодится комплекс ASIM.
— Можно сказать, что новый феномен, который ASIM будет изучать, — это окно во внутренние процессы, происходящие в молнии, — подчеркивает в одном из интервью ведущий исследователь проекта, физик из Дании Торстен Нейберт.
Проект только начался, но перспективы у него самые радужные, ведь в последние годы наука семимильными шагами продвигается в изучении молний. Судите сами. Как отмечает Мария Шаталина из Лаборатории физики молний, только недавно были открыты так называемые компактные внутриоблачные разряды — очень мощные и редкие, их приходится изучать со спутников. А вот другое открытие: благодаря высокочувствительным скоростным инфракрасным камерам российскими учеными из Высоковольтного научно-исследовательского центра ВЭИ обнаружен новый тип зарядов — так называемые сталкеры.
— Они идут перед лидерным разрядом и показывают, как он будет развиваться, — уточняет Шаталина.— Одно из важных направлений в науке о молниях — это попытка их предсказать, выяснить условия возникновения, вероятность, мощность и направление разряда… Так вот, изучение сталкеров помогает прояснить эти вопросы.
Впрочем, человек давно мечтает не просто предсказывать молнии, но и «управлять» ими.
Американские ученые из Флориды экспериментируют с так называемыми триггерными молниями (запускают в грозовое облако ракеты с заземленной проволокой, пытаясь спровоцировать появление разряда).
Это не просто научное любопытство: возможно, когда-нибудь с помощью подобных технологий мы научимся «разряжать» надвигающиеся грозы… А, к примеру, подмосковные специалисты исследуют, при каких условиях заряд может попасть в самолет, пролетающий через грозовое облако: эксперименты проводятся на моделях, причем моделируют и облако, и самолет.
Наука о молниях не только открывает новые горизонты, но и пересматривает имеющиеся взгляды. Еще одно открытие, буквально переворачивающее наши представления о молниях, связано с явлением, которое названо «встречный лидер». Речь вот о чем: ранее считалось, что молния бьет сверху вниз, из облака в землю. Однако благодаря современным высокоскоростным съемкам выяснилось: когда сверху, из облака, стартует лидер (так называют первую стадию образования грозового разряда), ему навстречу, с земли, идет встречный разряд, а соединяются они на высоте в несколько десятков метров над поверхностью земли. То есть, когда молния бьет в дерево (или, не дай бог, в человека), она бьет не сверху, а снизу! Это очень быстрый процесс, незаметный глазу, — несколько сотен миллисекунд, но его открытие, по сути, — маленькая революция.
Впрочем, загадок, связанных с молниями и грозами, на наш век хватит: до сих пор не очень понятно, как устроена шаровая молния и почему возникает. Как нет эффективных инструментов, скажем, по прогнозированию гроз.
— Грозы происходят в атмосфере, а это многофазная, сильно дисперсная система: там есть лед, вода, газы, ионы, все это взаимодействует, и просчитать все факторы пока не представляется возможным, — объясняет Мария Шаталина.— Вероятность возникновения грозы, конечно, частично коррелирует с многолетним опытом наблюдений, но мы хотим точно знать, будет ли гроза, как долго она продлится и почему возникает именно в этом регионе. Или еще вопрос: при каких условиях бывают положительные, а при каких отрицательные вспышки? Известно, допустим, что положительно заряженные, очень мощные вспышки возникают там, где в атмосферу попадают продукты вулканической деятельности и природных пожаров. Но как именно это происходит? Все это до сих пор требует исследований.
Ученые, подчеркивает Шаталина, прежде всего хотят понять, как вся эта глобальная атмосферная электрическая цепь влияет на климат и жизнь на Земле, на человека. Хотя вопрос легко можно и переформулировать: а как человек может повлиять на нее?
https://retina.news.mail.ru/prev780x440/pic/89/2c/g33525999_57fd085df6b834bcf87c46d44cf9835e.jpg
Источник: Фотоархив ИД «Коммерсантъ»
Атмосфера загадок
Дмитрий Зыков, директор фонда «Наука, культура и жизнь», доцент МГИМО
Когда я учился в школе, казалось, что про молнию уже все известно. Нам уверенно рассказывали, что у земли и облака есть разноименные заряды: когда они сближаются на критическое расстояние, происходит разряд — его-то и видно, и слышно с земли. Однако с развитием измерительных приборов и накоплением научных данных оказалось, что это лишь часть правды. Ну, например, выяснилось, что молнии могут быть не только между землей и облаком, но и между разноименно заряженными облаками. Или что бывает молния, сопровождающаяся дождем, и та, что дождем не сопровождается. Или что молнии часто сопровождают торнадо, только их природа совершенно иная (так называемые наведенные заряды образуются из-за того, как именно работает торнадо, — это чистая электростатика). В результате сегодня мы многое знаем о молниях, но чем больше наука узнает, тем больше возникает вопросов, открываются все новые детали, которые надо уточнять. Вот, скажем, у теоретического отдела Физического института Академии наук есть площадка на Алтае: там наблюдают за молниями. Еще лет 10 назад на этой площадке в день фиксировалось по 15−20 разрядов, а сейчас это месячный показатель. Почему он упал? Вопрос. Возможно, что-то случилось с электрическим полем атмосферы (в атмосфере электрически заряжено все, от осадков до пыли.— «О»). Но с чем это связано? С климатом? Тогда как именно действует эта связь?
В климатологии сегодня вообще больше вопросов, чем ответов. Откуда берутся землетрясения, провоцирующие цунами? От чего зависит вулканическая активность?
Да что там, мы даже не знаем, почему, к примеру, из части вулканов идет жидкая магма, а другие вулканы выбрасывают только камни и дым. Или вернемся к молниям: известно, что электромагнитное поле Земли и грозовая активность тесно связаны.
Так вот сегодня нас пугают сменой магнитных полюсов Земли. Может ли это произойти? И если да, то в какую сторону будут изменения? Как это скажется на той же самой грозовой активности? Наблюдения за свечением в верхних слоях атмосферы могут дать ответ хотя бы на часть этих вопросов. К тому же такие исследования в некоторой степени экономически оправдывают существование дорогой игрушки вроде МКС: позволяют набрать статистику, опробовать новейшие приборные комплексы и, вполне возможно, использовать полученные данные для более точного предсказания погоды. А это уже совершенно конкретные деньги, причем немалые…
Как часто бывает с фундаментальной наукой, мы не способны предсказать практическую пользу, которую в итоге получим от нынешних исследований. Но можно не сомневаться, она будет. Напомню: исследование квантовых переходов вылилось в появление светодиодов, а лазеры, начинавшиеся как чистая наука, сегодня используются на производстве. Схожие перспективы может открыть и изучение TLE. К примеру, если это подскажет нам, как убрать помехи при передачи данных со спутников во время грозы, уже неплохо.
Александр Раевский, Московский физико-технический институт
Многие секреты молнии до сих пор не разгаданы. Облако не может так наэлектризовать себя, чтобы между ним и землей возник разряд. Напряженность электрического поля в грозовом облаке не превышает 400 киловольт на метр (кВ/м), а электрический пробой в воздухе происходит при напряженности свыше 2500 кВ/м. Значит, для возникновения молнии необходимо что-то еще. По мнению ученых из группы Александра Гуревича, процесс «запускают» космические лучи — частицы высоких энергий, обрушивающиеся на Землю из космоса.
Николай Калинин, завкафедрой метеорологии и охраны атмосферы географического факультета ПГНИУ
Существует несколько видов молний. Наиболее распространенная — линейная. Еще есть четочная молния — обычно появляется между двумя тучами, образуя прерывистую линию светящихся пятен. Еще один вид — плоская — электрический разряд на поверхности облаков, не имеющий линейного характера и состоящий, по-видимому, из светящихся разрядов. И шаровая — выглядит как светящееся и плавающее в воздухе образование. Ученый-физик Капица считал, что шаровая молния имеет радиоволновую природу, поэтому она проходит по проводам через стены и дымоходы.
Александр Костинский, участник международной коллаборации «Молния и ее проявления»
— Откуда взялись такие сказочные названия, как эльфы, духи, спрайты?
— Эльфы — это сокращение от английского Emissions of Lightand Very Low Frequency Perturbations from Electromagnetic Pulse Sources (Elves), по звучанию оно напоминает название мифических эльфов. Спрайты — это танцующие воздушные сказочные создания. Когда открывали все новые по формам классы разрядов, то там были и carrots, морковки, и гномы, и медузы и т. д. Эти названия не просто шутки геофизиков, но и способ привлечь к изучению новых явлений внимание, а с ним и финансирование.
Кирилл Журенков